Hamaker方程

类别:    标签: 数理   阅读次数:   版权: (CC) BY-NC-SA

2014-11-18 19:50:43

若粒子之间的van der Waals吸引势与距离的6次方成反比, Hamaker方程给出了两个宏观球形粒子之间的吸引能. 当粒子之间的吸引势取其他形式时, 可利用下式进行计算

\[E={-\p^2 q^2 \l \over z} \int_{z-R_2}^{z+R_2} [R_2^2-(z-R)^2] dR \int_{R-R_1}^{R+R_1} {R_1^2-(R-r)^2 \over r^{n-1}} dr\]

令 $\a=R_1, \b=R_2, \k={-\p^2 q^2 \l \over z}$

\[\begin{align} E &=\k \int_{z-\b}^{z+\b} [\b^2-(z-R)^2] dR \int_{R-\a}^{R+\a} {\a^2-(R-r)^2 \over r^{n-1}} dr \\ &= \k \int_{z-\b}^{z+\b} [\b^2-(z-R)^2] I_n(R) dR \end{align}\] \[\alg I_n=\int_{R-\a}^{R+\a} {\a^2-(R-r)^2 \over r^{n-1}} dr={R^2-\a^2 \over n-2} {1 \over r^{n-2}} -{2R \over n-3} {1 \over r^{n-3}} +{1 \over n-4} {1 \over r^{n-4}} (n \ge 4) \ealg\]

当 $n \le 4$ 时, 此积分需要单独考虑.

$n=1$

\[\alg I_1 &= {4 \over 3} \a^3 \\ E_1 &= \k {4 \over 3} \a^3 {4 \over 3} \b^3 = - {Q_1 Q_2 \l \over z} \ealg\]

这种情形下, 两个球形粒子之间的势能与将其视为处于中心的质点是一样的. 引力, 静电相互作用就属于这种情况, 所有我们可以将星球与荷电小球视为质点, 利用万有引力定律或是库伦定律计算势能.

$n=2$

\[\alg I_2 &= 2 \a R +(R^2-\a^2)\ln{R-\a \over R+\a} \\ E_2 /\k &= \int_{z-\b}^{z+\b} 2 \a R[\b^2-(z-R)^2] dR + \int_{z-\b}^{z+\b} (R^2-\a^2)[\b^2-(z-R)^2] \ln{R-\a \over R+\a} dR \\ &= {8 \over 3} \a \b^3 z + \int_{z-\b}^{z+\b} \left[-R^4 + 2zR^3 + (\a^2+\b^2-z^2)R^2 - 2z\a^2R + \a^2(z^2-\b^2)\right] \ln{R-\a \over R+\a} dR \\ \ealg\]

相关的积分公式如下

\[\alg \int R^4 \ln{R-a \over R+a} dR &= {1 \over 10} ( -2 a^5 \ln(R-a)-a (2 a^4 \ln(a+R)+2 a^2 R^2+R^4)+2 R^5 \ln{R-a \over R+a} ) \\ &= {1 \over 10} \left[ -a R^4 -2 a^3 R^2 - 2 a^5 \ln(R^2-a^2) + 2 R^5 \ln{R-a \over R+a} \right] \\ \int R^3 \ln{R-a \over R+a} dR &= {1 \over 12} ( -3 a^4 \ln(R-a)+3 a^4 \ln(a+R)-6 a^3 R+3 R^4 \ln{R-a \over R+a}-2 a R^3 ) \\ &= {1 \over 12} \left[ -2 a R^3 - 6 a^3 R + 3(R^4-a^4)\ln{R-a \over R+a} \right] \\ \int R^2 \ln{R-a \over R+a} dR &= {1 \over 3 } ( -a^3 \ln(R-a) -a (a^2 \ln(R+a)+R^2)+R^3 \ln{R-a \over R+a} \\ &= {1 \over 3 } \left[ -a R^2 - a^3 \ln(R^2-a^2) + R^3 \ln{R-a \over R+a} \right] \\ \int R^1 \ln{R-a \over R+a} dR &= {1 \over 2 } ( -a^2 \ln(R-a) +R^2 \ln{R-a \over R+a}+a (a \ln(a+R)-2 R) ) \\ &= {1 \over 2 } \left[ -2 a R + (R^2-a^2) \ln{R-a \over R+a} \right] \\ \int \ln{R-a \over R+a} dR &= -a \ln(R-a)+R \ln{R-a \over R+a} -a \ln(a+R) \\ &= -a \ln(R^2-a^2) +R \ln{R-a \over R+a} \ealg\] \[\alg & \int (A_4 R^4+A_3 R^3 + A_2 R^2 +A_1 R +A_0) \ln{R-a \over R+a} dR \\ = -&{A_4 \over 10} a R^4 -{A_3 \over 6} a R^3 -({A_4 \over 5} a^2+{A_2 \over 3}) a R^2 -({A_3 \over 2} a^2+A_1) a R \\ -& ({A_4 \over 5}a^4+{A_2 \over 3}a^2+A_0) a \ln(R^2-a^2) \\ +& [{A_4 \over 5}R^5 +{A_2 \over 3}R^3 +A_0 R +{A_3 \over 4}(R^4-a^4) +{A_1 \over 2}(R^2-a^2) ] \ln{R-a \over R+a} \ealg\]

下面的eigenmath代码用于计算定积分

# Language: eigenmath
A4 = -1
A3 = 2z
A2 = a^2+b^2-z^2
A1 = -2 z a^2
A0 = a^2(z^2-b^2)

I4(R)= -A4 a R^4/10
I3(R)= -A3 a R^3/6
I2(R)= -(A4 a^2/5 + A2/3) a R^2
I1(R)= -(A3 a^2/2 + A1) a R
I00(R)= -(A4 a^4/5 + A2 a^2/3 + A0) a  # ln(R^2-a^2)
I01(R)= (A4 R^5/5 + A2 R^3/3 + A0 R + A3 (R^4-a^4)/4 + A1 (R^2-a^2)/2 ) # ln((R-a)/(R+a))

I41(R)= I5+I4+I3+I2
I41(z+b)-I41(z-b)
simplify

I00(z+b)
simplify
I00(z-b)
simplify

I01(z+b)
simplify

I01(z-b)
simplify

最终结果

\[\alg E_2 /\k &= {8 \over 3} \a \b^3 z + {2 \over 15} \a \b z[z^2+11\a^2-9\b^2] \\ &+ {2 \over 15} \a^3 [\a^2 +5(z^2-\b^2)] \ln{(z-\b)^2-\a^2 \over (z+\b)^2-\a^2} \\ &+ {2 \over 15} \b^3 [\b^2 +5(z^2-\a^2)] \ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \\ &+ {z \over 30} [-z^4+10(\a^2+\b^2)z^2 +15(\a^2-\b^2)^2] \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \\ &= {2 \over 15} \a \b z[z^2+11(\a^2+\b^2)] \\ &+ {2 \over 15} \a^3 [\a^2 +5(z^2-\b^2)] \ln{(z-\b)^2-\a^2 \over (z+\b)^2-\a^2} \\ &+ {2 \over 15} \b^3 [\b^2 +5(z^2-\a^2)] \ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \\ &+ {z \over 30} [-z^4+10(\a^2+\b^2)z^2 +15(\a^2-\b^2)^2] \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \\ \ealg\]

$n=3$

\[\alg I_3 &= 2 R \ln{R+\a \over R-\a} -4\a \\ E_2 /\k &= \int_{z-\b}^{z+\b} -4 \a [\b^2-(z-R)^2] dR + \int_{z-\b}^{z+\b} 2R [\b^2-(z-R)^2] \ln{R+\a \over R-\a} dR \\ &= -{16 \over 3} \a \b^3 + \int_{z-\b}^{z+\b} [2R^3-4zR^2+2(z^2-\b^2)R] \ln{R-\a \over R+a} dR \\ &= -{2 \over 3} \a\b[z^2+3(\a^2+\b^2)] \\ &- {4 \over 3}\a^3 z\ln{(z-\b)^2-\a^2 \over (z+\b)^2-\a^2} \\ &- {4 \over 3}\b^3 z\ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \\ &+ {1 \over 6}[z^4-6(\a^2+\b^2)z^2 -3(\a^2-\b^2)^2] \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \ealg\]

$n=4$

\[\alg I_4 &= {2 \a R \over R^2-\a^2} + \ln{R-\a \over R+\a} \\ E_2 /\k &= \int_{z-\b}^{z+\b} {2 \a R \over R^2-\a^2} [\b^2-(z-R)^2] dR + \int_{z-\b}^{z+\b} [\b^2-(z-R)^2] \ln{R+\a \over R-\a} dR \\ &= \int_{z-\b}^{z+\b} {2 \a\b^2 R \over R^2-\a^2} dR - \int_{z-\b}^{z+\b} {2 \a R (z-R)^2 \over R^2-\a^2} dR + \int_{z-\b}^{z+\b} [\b^2-(z-R)^2] \ln{R+\a \over R-\a} dR \\ &= 4\a\b z + \a(\b^2-\a^2-z^2) \ln{(z+\b)^2-\a^2 \over (z-\b)^2-\a^2} -2 \a^2 z \ln{z^2-(\a+\b)^2 \over z^2-(\a-\b)^2} \\ & -{8 \over 3} \a\b z + \a(z^2+{\a^2 \over 3}-\b^2) \ln{(z+\b)^2-\a^2 \over (z-\b)^2-\a^2} +z(-{z^2 \over 3}+\b^2-\a^2) \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2 } +{2 \over 3} \b^2 \ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} \\ &= {4 \over 3} \a \b z + {2 \over 3} \a^3 \ln{(z-\b)^2-\a^2 \over (z+\b)^2-\a^2} + {2 \over 3} \b^3 \ln{(z-\a)^2-\b^2 \over (z+\a)^2-\b^2} +z({1 \over 3}z^2+\a^2+\b^2) \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \ealg\]

$n=5$

\[\alg E_2 /\k &= {2 \over 3} \a\b +{z^2-\a^2-\b^2 \over 3} \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} \ealg\]

$n=6$

\[\alg E_2 /\k &={z \over 6} \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} -{2 \a\b z \over 3} {\a^2+\b^2-z^2 \over [\a^2-(z-\b)^2][\a^2-(z+\b)^2]} \\ &= {z \over 6} \ln{z^2-(\a-\b)^2 \over z^2-(\a+\b)^2} + {\a \b z \over 3}[ {1 \over z^2-(\a+\b)^2} + {1 \over z^2-(\a-\b)^2} ] \ealg\]

下面的 matlab 代码可以帮助推导 $n>4$ 时的结果

# Language: matlab
clc;
syms n z r R a b In I f E real

% In=(R^2-a^2)*r^(2-n)/(n-2) -2*R*r^(3-n)/(n-3) + r^(4-n)/(n-4);
% 
% m=6;
% 
% I=subs(In, n, m);
% I=In;
% I=subs(I, r, R+a)-subs(I, r, R-a);
% I=simple(I);
% I
% pretty(I)

I=2*(a*n+exp(2*a*n)*(a*n-1)+1)*exp(-n*(a+R))/n^3

f=(b^2-(z-R)^2)*I
pretty(f)

I=int(f,R);
I=simple(I);
% I=subs(I, 'sqrt(-1)', 'j');
% I=subs(I, 'atan((R*j)/a)', 'j*log((a+R)/(a-R))/2');
% I=collect(I, 'j');
% I=subs(I, 'j^2', '-1');
I
pretty(I)

E=subs(I, R, z+b)-subs(I, R, z-b);
E=simple(E);
% E=collect(E,'a^2+b^2-z^2')
E
pretty(E)

可见, 即便对于均匀分布的球形粒子, 其作用力的一般形式也很复杂, 但综合看起来, 表达式中都含有对数形式, 这可能预示着在构造势函数时要考虑对数形式的函数, 但常见的势能函数中却很少使用这种形式.

推广一下, 当粒子之间的相互作用为指数势 $e^{-nr}$ 时, 得到的结果更简单,

\[\alg I &= \int_{R-\a}^{R+\a} [\a^2-(R-r)^2] r e^{-n r} dr \\ &= 2 e^{-n (\a+R)} { n (\a (n (\a+R)+3)+R)-e^{2n\a} ((n (\a(n\a-nR-3)+R)+3)+3) \over n^4} \\ &= A e^{-n R} (BR-C) \\ E_2 /\k &=\int_{z-\b}^{z+\b} [\b^2-(z-R)^2] I dR \\ &= e^{-n(z+\b)} \left[ 2 { 3 \b B - C + z B + (C+ 3\b B - z B) e^{2n\b} \over n^3 } - 2 \b { C - \b B - z B + (C + \b B - z B) e^{2n\b} \over n^2} - 6 B { e^{2n\b} - 1 \over n^4} \right] \ealg\]

其中

$A= {2\over n^4} e^{-n\a}, B=n[1+n\a+(n\a-1)e^{2n\a}], C=n^2\a^2+3n\a-e^{2n\a}(n^2\a^2-3n\a+3n+3)$

◆本文地址: , 转载请注明◆
◆评论问题: https://jerkwin.herokuapp.com/category/3/博客, 欢迎留言◆


前一篇: 【转】梁鹤年:大国盛衰的逻辑
后一篇: 数据展示:请选择好的颜色映射方案

访问人次(2015年7月 9日起): | 最后更新: 2024-01-20 10:40:28 UTC | 版权所有 © 2008 - 2024 Jerkwin